Are we ready for genome-scale modeling in plants?

نویسندگان

  • Eva Collakova
  • Jiun Y Yen
  • Ryan S Senger
چکیده

As it is becoming easier and faster to generate various types of high-throughput data, one would expect that by now we should have a comprehensive systems-level understanding of biology, biochemistry, and physiology at least in major prokaryotic and eukaryotic model systems. Despite the wealth of available data, we only get a glimpse of what is going on at the molecular level from the global perspective. The major reason is the high level of cellular complexity and our limited ability to identify all (or at least important) components and their interactions in virtually infinite number of internal and external conditions. Metabolism can be modeled mathematically by the use of genome-scale models (GEMs). GEMs are in silico metabolic flux models derived from available genome annotation. These models predict the combination of flux values of a defined metabolic network given the influence of internal and external signals. GEMs have been successfully implemented to model bacterial metabolism for over a decade. However, it was not until 2009 when the first GEM for Arabidopsis thaliana cell-suspension cultures was generated. Genome-scale modeling ("GEMing") in plants brings new challenges primarily due to the missing components and complexity of plant cells represented by the existence of: (i) photosynthesis; (ii) compartmentation; (iii) variety of cell and tissue types; and (iv) diverse metabolic responses to environmental and developmental cues as well as pathogens, insects, and competing weeds. This review presents a critical discussion of the advantages of existing plant GEMs, while identifies key targets for future improvements. Plant GEMs tend to be accurate in predicting qualitative changes in selected aspects of central carbon metabolism, while secondary metabolism is largely neglected mainly due to the missing (unknown) genes and metabolites. As such, these models are suitable for exploring metabolism in plants grown in favorable conditions, but not in field-grown plants that have to cope with environmental changes in complex ecosystems. AraGEM is the first GEM describing a photosynthetic and photorespiring plant cell (Arabidopsis thaliana). We demonstrate the use of AraGEM given the current (limited) knowledge of plant metabolism and reveal the unexpected robustness of AraGEM by a series of in silico simulations. The major focus of these simulations is on the assessment of the: (i) network connectivity; (ii) influence of CO₂ and photon uptake rates on cellular growth rates and production of individual biomass components; and (iii) stability of plant central carbon metabolism with internal pH changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mathematical Programming Model for Flow Shop Scheduling Problems for Considering Just in Time Production

  In this paper, we consider a flow shop scheduling problem with bypass consideration for minimizing the sum of earliness and tardiness costs. We propose a new mathematical modeling to formulate this problem. There are several constraints which are involved in our modeling such as the due date of jobs, the job ready times, the earliness and the tardiness cost of jobs, and so on. We apply adapte...

متن کامل

I-45: FISH and Array CGH for PGD of Cancer

We developed several FISH approaches to enable preimplantation genetic diagnosis of cancer predisposition syndromes. An overview of the applications and the results of those PGDs will be provided. In addition we developed several novel tools to genome wide screen for CNVs and SNPs in single cells. Those technologies are now being applied for polar body, blastomere and blastocyst screening for c...

متن کامل

Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...

متن کامل

The Arabidopsis genome: a foundation for plant research.

The sequence of the first plant genome was completed and published at the end of 2000. This spawned a series of large-scale projects aimed at discovering the functions of the 25,000+ genes identified in Arabidopsis thaliana (Arabidopsis). This review summarizes progress made in the past five years and speculates about future developments in Arabidopsis research and its implications for crop sci...

متن کامل

I-40: Male Genome Programming, Infertility and Cancer

Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant science : an international journal of experimental plant biology

دوره 191-192  شماره 

صفحات  -

تاریخ انتشار 2012